
Decentralized Systems Engineering

CS-438 – Fall 2024

Pierluca Borsò-Tan and Bryan Ford

Credits: D. Ongaro, J. Ousterhout, L. Alvisi, A. Ghodsi, D. Mazières, L.Q. Torres, et al.



So far...

● Decentralized communication

● Unstructured & structured search

● Data storage

Let’s pick up where we left off ...



Conflict-Free Replicated Data Types (CRDTs)

Various types:

● Values

● Counters

● Sets

Two main categories:

● Operation-based – commutative replicated data types (CmRDTs)

● State-based – convergent replicated data types (CvRDTs)

→ Theoretically equivalent

● Lists

● Log-based

● Text



State-based CRDT – Formalism

Let U be the set of update operations, and V the set of values.

A state-based CRDT is a 5-tuple (S, s0, q, u, m), where:

• S is the set of states;

• s0 ∈ S is the initial state;

• q : S → V is the query function

• u : S × U → S is the update function

• m : S × S → S is the merge function



G-Counter CRDT

Specifications:

● Grow-only counter,

replicated across N machines

● Add(x)

updates our local counter

● Query() returns the value

● Merge(other_state)

merge’s other’s state

class GCounter(object):
def __init__(self, i, n):

self.i = i # server id
self.n = n # number of servers
self.xs = [0] * n

def add(self, x):
assert x >= 0
self.xs[self.i] += x

def query(self):
return sum(self.xs)

def merge(self, other):
zipped = zip(self.xs, other.xs)
self.xs = [max(x, y) for (x, y) in zipped]



G-Counter CRDT

Specifications:

● Grow-only counter,

replicated across N machines

● Add(x)

updates our local counter

● Query() returns the value

● Merge(other_state)

merge’s other’s state

4 2

13

Tot: 0 Tot: 0

Tot: 0Tot: 0



G-Counter CRDT

Specifications:

● Grow-only counter,

replicated across N machines

● Add(x)

updates our local counter

● Query() returns the value

● Merge(other_state)

merge’s other’s state

4 2

13

5

42

Tot: 5 Tot: 0

Tot: 4Tot: 2



G-Counter CRDT

Specifications:

● Grow-only counter,

replicated across N machines

● Add(x)

updates our local counter

● Query() returns the value

● Merge(other_state)

merge’s other’s state

4 2

13

5 5

4 5 22

Tot: 5 Tot: 5

Tot: 11Tot: 2



G-Counter CRDT

Specifications:

● Grow-only counter,

replicated across N machines

● Add(x)

updates our local counter

● Query() returns the value

● Merge(other_state)

merge’s other’s state

4 2

13

5 1 5

4 5 22

Tot: 5 Tot: 6

Tot: 11Tot: 2



G-Counter CRDT

History, as seen locally:

Node 1: 0 → 5 → 6 → 12

Node 2: 0 → 4 → 11 → 12

Node 3: 0 → 5 → 12

Node 4: 0 → 2 → 12

… eventually consistent !

4 2

13

1 4 5 2 1 4 5 2

1 4 5 21 4 5 2

Tot: 12 Tot: 12

Tot: 12Tot: 12



Local-First Software – simpler backends



Strong Consistency ?

● What if we wanted a shared history of the “state” ?

Google Docs approach:

→ centralize

→ use time stamps

→ does not ensure consistency

● How could we stay distributed (or even decentralized) and be consistent ?

● How could we build the same, incremental history of the state ?

Today’s lecture: Replication and consensus !



Replication and Consensus

Paxos

(Homework 3)



Consistent Data Replication

You know of:

● Redundant Array of Independent Disks (RAID)

● Centralized, distributed databases (Master/slave replication)

Our goal, decentralization:

● No privileged “master”

● Replicated & consistent data

→ Hard problem, requires consensus



Consensus

● Consensus is agreeing on one result

● Once a majority agrees on a proposal, that is consensus

● The consensus is eventually known by everyone

● Involved parties want to agree on any result, not just their own

... in the presence of failures

● Types

Permissioned (today) – known nodes

Permissionless (week 9 & 10) – anyone 



Single-value Consensus (formally)

We want all nodes (“processes”) to agree on a single value

● Agreement / Safety

every correct process must agree on the same value

● Termination / Liveness

eventually, every correct process decides some value

● Integrity / Validity (weak / strong / ...)

If all correct processes proposed value X, then correct processes must decide X

If a correct process decides X, then X must have been proposed by correct process

● 𝑓 processes can fail → failure model?



Types of (permissioned) consensus

● Leader-based

● Electing/rejecting leader is tricky,

and requires consensus

● “Following” is easy & efficient

● Peer-to-Peer

aka Leader-less

● Consensus is needed continuously

● No “extra” work when node fails

Leader

Follower
Peer

Peer

Peer

Peer

Peer



Building a consensus... 

Easy (and wrong) !

● All “proposers” node vote

● One acceptor choses the value

What if the acceptor crashes 

... before choosing ? 

... after choosing ?

P PP

A

P

1
2 1

1



Building a better consensus... 

● All “proposers” node vote

● Multiple “acceptors” node

● Value is chosen if accepted by majority

Easy (and still wrong) : split votes ! 



Building a better consensus ?

● Same as before

● Now, “acceptors” nodes accept every value they receive

● Value is chosen if accepted by majority

● We need a two-phase protocol !



Paxos

● A family of distributed algorithms for consensus

Three roles:

● Proposers: put forth values to be chosen

● Acceptors: respond to proposers, reach consensus

● Learners: learn the agreed upon value

● Nodes can take any (or even all) roles

● Nodes must know how many acceptors make up a majority

● Nodes must be persistent: they can’t walk back on choices



Paxos phases : intuition

● Prepare phase

Proposer: “Will you consider a value I propose ?”

Each acceptor: “Okay” / “Nope...”

If a majority is obtained:

● Accept phase

Proposer: “Here’s my proposed value: X”

Acceptors: “Okay for X !” / “Nope!”



The Paxos Algorithm



The Paxos Algorithm



The Paxos Algorithm

PROPOSE

PROPOSE



The Paxos Algorithm

PROPOSE

PROPOSE

PROPOSE



The Paxos Algorithm

PROPOSE

PROPOSE

PROPOSE



The Paxos Algorithm

PROPOSE

PROPOSE

PROPOSE



The Paxos Algorithm

PROPOSE

PROPOSE

PROPOSE



The Paxos Algorithm

PROPOSE

PROPOSE

PROPOSE



The Paxos Algorithm

PROPOSE

PROPOSE

PROPOSE



The Paxos Algorithm

PROPOSE

PROPOSE

PROPOSE

PROPOSE



The Paxos Algorithm

PROPOSE

PROPOSE

PROPOSE

PROPOSE



The Paxos Algorithm

PROPOSE

PROPOSE

PROPOSE

PROPOSE



Paxos Challenges

● Contention

● Non crash-stop behaviour

Asynchrony

Byzantine faults

● (In)efficiency of simple Paxos

Introducing a leader

Protocol “Quick wins”

● Choosing multiple, subsequent values (e.g. Multi-Paxos)



The Raft Consensus Algorithm

● Designed to be easy to understand

● Functionally equivalent to Paxos

● Easier to implement (claim)

● Widely used in the industry

MongoDB, CockroachDB

Etcd, Neo4j, RabbitMQ

...


	Motivation
	Slide 1: Decentralized Systems Engineering
	Slide 2: So far...
	Slide 3: Conflict-Free Replicated Data Types (CRDTs)
	Slide 4: State-based CRDT – Formalism
	Slide 5: G-Counter CRDT
	Slide 6: G-Counter CRDT
	Slide 7: G-Counter CRDT
	Slide 8: G-Counter CRDT
	Slide 9: G-Counter CRDT
	Slide 10: G-Counter CRDT
	Slide 12: Local-First Software – simpler backends
	Slide 13: Strong Consistency ?
	Slide 14: Replication and Consensus
	Slide 15: Consistent Data Replication
	Slide 16: Consensus
	Slide 17: Single-value Consensus (formally)
	Slide 18: Types of (permissioned) consensus
	Slide 19: Building a consensus... 
	Slide 20: Building a better consensus... 
	Slide 21: Building a better consensus ?
	Slide 22: Paxos
	Slide 23: Paxos phases : intuition
	Slide 24: The Paxos Algorithm
	Slide 25: The Paxos Algorithm
	Slide 26: The Paxos Algorithm
	Slide 27: The Paxos Algorithm
	Slide 28: The Paxos Algorithm
	Slide 29: The Paxos Algorithm
	Slide 30: The Paxos Algorithm
	Slide 31: The Paxos Algorithm
	Slide 32: The Paxos Algorithm
	Slide 33: The Paxos Algorithm
	Slide 34: The Paxos Algorithm
	Slide 35: The Paxos Algorithm
	Slide 36: Paxos Challenges

	Raft
	Slide 37: The Raft Consensus Algorithm


