Decentralized Systems Engineering

CS-438 — Fall 2024

DEDI S Pierluca Borso-Tan and Bryan Ford E P F L

Credits: D. Ongaro, J. Ousterhout, L. Alvisi, A. Ghodsi, D. Maziéres, L.Q. Torres, et al.

So far...

e Decentralized communication
e Unstructured & structured search
e Data storage

Let’s pick up where we left off ...

Conflict-Free Replicated Data Types (CRDTS)

Various types:

e Values e Lists
e Counters e Log-based
e Sets e Text

Two main categories:

e Operation-based — commutative replicated data types (CmRDTS)
e State-based — convergent replicated data types (CvRDTS)

- Theoretically equivalent

State-based CRDT — Formalism

Let U be the set of update operations, and V the set of values.

A state-based CRDT is a 5-tuple (S, s°, q, u, m), where:

* S is the set of states;

« sO0 € S is the initial state;

*q:S — Visthe query function
u:S xU— Sisthe update function

*m:S xS — Sisthe merge function

G-Counter CRDT

class GCounter(object):

Specifications: def _init_ (self, i, n):
e Grow-only counter, self.i = i # server id
_) self.n = n # number of servers
replicated across N machines self.xs = [0] * n
def add(self, x):
e Add(x) assert x >= 0
updates our local counter self.xs[self.i] += X
def query(self):
e Query() returns the value return sum(self.xs)

def merge(self, other):
e Merge(other_state) zipped = zip(self.xs, other.xs)

, , self.xs = [max(x, for (X, in zipped
merge’s other’s state [max(x, y) (X, y) pped]

G-Counter CRDT

Specifications: = Tot:0

e Grow-only counter,
replicated across N machines

e Add(x)

updates our local counter

e Query() returns the value Tot: 0

e Merge(other_state)
merge’s other’s state

G-Counter CRDT

Specifications:

Grow-only counter,
replicated across N machines

Add(x)
updates our local counter

Query() returns the value

Merge(other_state)
merge’s other’s state

G-Counter CRDT

Specifications: > Tot:5

e Grow-only counter,
replicated across N machines

e Add(x)

updates our local counter 2 4 | 5 | 2

e Query() returns the value Tot: 2

e Merge(other_state)
merge’s other’s state

G-Counter CRDT

Specifications:

Grow-only counter,
replicated across N machines

Add(x)
updates our local counter

Query() returns the value

Merge(other_state)
merge’s other’s state

G-Counter CRDT

History, as seen locally:

Node 1: 0 - 526 212

Node 2: 0 > 4> 11 2> 12
Node 3: 0> 5 - 12 1 1
Node 4: 0 > 2 > 12

... eventually consistent !

Local-First Software — simpler backends

Strong Consistency ?

e What if we wanted a shared history of the “state” ?

Google Docs approach:
—> centralize
—> use time stamps
—> does not ensure consistency

e How could we stay distributed (or even decentralized) and be consistent ?
e How could we build the same, incremental history of the state ?

Today’s lecture: Replication and consensus !

Replication and Consensus

Paxos

(Homework 3)

Consistent Data Replication

You know of:
e Redundant Array of Independent Disks (RAID)

e Centralized, distributed databases (Master/slave replication)

Our goal, decentralization:

e No privileged “master”

e Replicated & consistent data

—> Hard problem, requires consensus

consensus

e Consensus is agreeing on one result

e Once a majority agrees on a proposal, that is consensus

e The consensus is eventually known by everyone

e Involved parties want to agree on any result, not just their own
... In the presence of failures

e Types
Permissioned (today) — known nodes

AN
Permissionless (week 9 & 10) — anyone %

Single-value Consensus (formally)

We want all nodes (“processes”) to agree on a single value

e Agreement / Safety
every correct process must agree on the same value

e Termination /Liveness
eventually, every correct process decides some value

e |Integrity / Validity (weak / strong/ ...)
If all correct processes proposed value X, then correct processes must decide X
If a correct process decides X, then X must have been proposed by correct process

e f processes can fail - failure model?

Types of (permissioned) consensus

e |Leader-based e Peer-to-Peer
aka Leader-less

e Electing/rejecting leader is tricky,
and requires consensus e Consensus is needed continuously

e “Following” is easy & efficient e No “extra” work when node fails

Building a consensus...

Easy (and wrong) !

e All “proposers” node vote

e One acceptor choses the value
What if the acceptor crashes

... before choosing ?
... after choosing ?

Building a better consensus...

e All “proposers” node vote
e Multiple “acceptors” node
e Value is chosen if accepted by majority

accept?(red) accepted(red)

accepted(blue)

accept'?(green) accepted(green)

Easy (and still wrong) : split votes !

Building a better consensus ?

e Same as before
e Now, “acceptors” nodes accept every value they receive
e Value is chosen if accepted by majority

oo . Red Chosen
accept?(red) [accepted(red);
S1 X : [T T e : sereessssnnstssrsrssssesl -
1]
1 accepted(red):
Sy oo S pted(red)i -
s \ | accepted(red)}
3 l_.---------".l >
84 ... -

e \We need a two-phase protocol !

Paxos

e A family of distributed algorithms for consensus

Three roles:

Proposers: put forth values to be chosen
Acceptors: respond to proposers, reach consensus
Learners: learn the agreed upon value

Nodes can take any (or even all) roles
Nodes must know how many acceptors make up a majority
Nodes must be persistent: they can’t walk back on choices

Paxos phases : intuition

e Prepare phase

Proposer: “Will you consider a value | propose ?”
Each acceptor: “Okay” / “Nope...”

If a majority is obtained:
e Accept phase

Proposer: “Here’s my proposed value: X”
Acceptors: “Okay for X I” / “Nope!”

The Paxos Algorithm

time

©PREPARE 5

(Acceptor z

= wants to propose a certain value:
It sends PREPARE |Dp to a majority (or all) of Acceptors.

IDp must be unique, e.g. slotted timestamp in nanoseconds.

e.g. 1chooses IDs 1, 3, 5...
2 chooses IDs 2,4, 6..., etc.
Timeout? retry with a new (higher) IDp.

The Paxos Algorithm

time

OPREPARE 5

Acceptor
PROMISE S

— wants to propose a certain value:
It sends PREPARE IDp to a majority (or all) of Acceptors.

IDp must be unique, e.g. slotted timestamp in nanoseconds.

e.g. 1 chooses IDs 1, 3, 5...
2 chooses IDs 2, 4, 6..., etc.
Timeout? retry with a new (higher) IDp.

‘ © Acceptor receives a PREPARE message for [Dp:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Will promise to ignore any request lower than IDp.
(?) Reply with PROMISE |Dp.

If a majority of acceptors promise, no ID<IDp can make it through.

The Paxos Algorithm

time

OPREPARE 5 PROPOSE 5, 'cat'

Acceptor
PROMISE 5

=3 wants to propose a certain value:
It sends PREPARE IDp to a majority (or all) of Acceptors.

IDp must be unique, e.qg. slotted timestamp in nanoseconds.

e.g. 1 chooses IDs 1, 3, 5...
2 chooses IDs 2, 4, 6..., etc.
Timeout? retry with a new (higher) IDp.

© Acceptor receives a PREPARE message for IDp:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Will promise to ignore any request lower than IDp.
(?) Reply with PROMISE |Dp.

If a majority of acceptors promise, no ID<IDp can make it through.

D

gets majority of PROMISE messages for a specific IDp:
It sends PROPOSE |Dp, VALUE to a majority (or all) of Acceptors.
(?) It picks any value it wants.

The Paxos Algorithm

time

OPREPARE 5 PROPOSE 5, 'cat’

PROMISE 5 ACCEPT 5, 'cat'

(Acceptor z

= wants to propose a certain value:
It sends PREPARE IDp to a majority (or all) of Acceptors.
IDp must be unique, e.g. slotted timestamp in nanoseconds.
e.g. 1 chooses IDs 1, 3, 5...
2 chooses IDs 2,4, 6..., etc.
Timeout? retry with a new (higher) IDp.
© Acceptor receives a PREPARE message for IDp:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Will promise to ignore any request lower than IDp.
(?) Reply with PROMISE |Dp.

If a majority of acceptors promise, no ID<IDp can make it through.

— gets majority of PROMISE messages for a specific I1Dp:
It sends PROPOSE |Dp, VALUE to a majority (or all) of Acceptors.

(?) It picks any value it wants.

© Acceptor receives an PROPOSE message for IDp, value:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Reply with ACCEPT |Dp, value. Also send it to all Learners.

The Paxos Algorithm

PROPOSE 5, 'cat'

time

OPREPARE 5

PROMISE 5

(Acceptor ,‘a

=3 wants to propose a certain value:
It sends PREPARE IDp to a majority (or all) of Acceptors.
IDp must be unique, e.g. slotted timestamp in nanoseconds.
e.g. 1 chooses IDs 1, 3, 5...
2 chooses IDs 2, 4, 6..., etc.
Timeout? retry with a new (higher) IDp.

© Acceptor receives a PREPARE message for IDp:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Will promise to ignore any request lower than IDp.
(?) Reply with PROMISE |Dp.

ACCEPT 5, 'cat'

If a majority of acceptors promise, no ID<IDp can make it through.

= gets majority of PROMISE messages for a specific I1Dp:
It sends PROPOSE |Dp, VALUE to a majority (or all) of Acceptors.
(?) It picks any value it wants.

. © Acceptor receives an PROPOSE message for IDp, value:

Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Reply with ACCEPT |Dp, value. Also send it to all Learners.
If a majority of acceptors accept |Dp, value, consensus is reached.
Consensus is and will always be on value (not necessarily IDp).

The Paxos Algorithm

time

QPREPARE 5 PROPOSE 5, 'cat'

ACCEPT 5, 'cat'
majority! consensus is 'cat

PROMISE 5

(Acceptor ,‘9

= Pr wants to propose a certain value:
It sends PREPARE IDp to a majority (or all) of Acceptors.
IDp must be unique, e.g. slotted timestamp in nanoseconds.
e.g. 1 chooses IDs 1, 3, 5...
[2 chooses IDs 2, 4, 6..., etc.
Timeout? retry with a new (higher) IDp.
© Acceptor receives a PREPARE message for IDp:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Will promise to ignore any request lower than IDp.
(?) Reply with PROMISE IDp.

I:> If a majority of acceptors promise, no ID<IDp can make it through.

Do r gets majority of PROMISE messages for a specific IDp:
It sends PROPOSE IDp, VALUE to a majority (or all) of Acceptors.
(?) It picks any value it wants.

© Acceptor receives an PROPOSE message for IDp, value:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Reply with ACCEPT |Dp, value. Also send it to all Learners.
If a majority of acceptors accept |IDp, value, consensus is reached.
Consensus is and will always be on value (not necessarily IDp).

‘ © Proposer or Learner get ACCEPT messages for IDp, value:
I:> If a proposer/learner gets majority of accept for a specific IDp,

they know that consensus has been reached on yalue (not IDp).

The Paxos Algorithm
OPREP:?E 5

PROPOSE 5, 'cat’

time

OPREPARE 4

ACCEPT 5, 'cat'
*majority! consensus is 'cat™

PROMISE 5

(Acceptor @

© Proposer wants to propose a certain value:
It sends PREPARE |Dp to a majority (or all) of Acceptors.
IDp must be unique, e.g. slotted timestamp in nanoseconds.
e.g. 1chooses IDs 1, 3, 5...
2 chooses IDs 2, 4, 6..., etc.
Timeout? retry with a new (higher) IDp.

© Acceptor receives a PREPARE message for IDp:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Will promise to ignore any request lower than IDp.
(?) Reply with PROMISE IDp.

ﬂ If a majority of acceptors promise, no ID<IDp can make it through.

© Proposer gets majority of PROMISE messages for a specific IDp:
It sends PROPOSE IDp, VALUE to a majority (or all) of Acceptors.
(?) It picks any value it wants.

© Acceptor receives an PROPOSE message for IDp, value:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Reply with ACCEPT IDp, value. Also send it to all Learners.
a If a majority of acceptors accept |Dp, value, consensus is reached.
Consensus is and will always be on value (not necessarily IDp).

© Proposer or Learner get ACCEPT messages for IDp, value:
If a proposer/learner gets majority of accept for a specific IDp,
they know that consensus has been reached on value (not IDp).

The Paxos Algorithm
OPREPARE 5

PROPOSE 5, 'cat'

time

QPREPARE 4 PREPARE 6
\

PROMISE 5

(Acceptor Z

© Proposer wants to propose a certain value:
It sends PREPARE |Dp to a majority (or all) of Acceptors.
IDp must be unique, e.g. slotted timestamp in nanoseconds.
e.g. 1 chooses IDs 1, 3, 5...
- 2 chooses IDs 2,4, 6..., etc.
Timeout? retry with a new (higher) IDp.

‘ © Acceptor receives a PREPARE message for [Dp:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Will promise to ignore any request lower than IDp.
Has it ever accepted anything? (assume accepted ID=IDa)
Yes ->Reply with PROMISE IDp accepted IDa, value.
No -> Reply with PROMISE |Dp.
“ If a majority of acceptors promise, no ID<IDp can make it through.

ACCEPT 5, 'cat’
*majority! consensus is 'cat™

© Proposer gets majority of PROMISE messages for a specific IDp:
It sends PROPOSE |Dp, VALUE to a majority (or all) of Acceptors.
(?) It picks any value it wants.

© Acceptor receives an PROPOSE message for IDp, value:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Reply with ACCEPT IDp, value. Also send it to all Learners.
a If a majority of acceptors accept |Dp, value, consensus is reached.
Consensus is and will always be on value (not necessarily IDp).

© Proposer or Learner get ACCEPT messages for IDp, value:
If a proposer/learner gets majority of accept for a specific |Dp,
they know that consensus has been reached on value (not IDp).

The Paxos Algorithm
OPREP.:E 5

PROPOSE 5, 'cat'

time

OPREPARE 4 PREPARE 6
] J Pe J .o e

ACCEPT 5, 'cat'
*majority! consensus is 'cat™

PROMISE 5

(Acceptor ,Z

© Prop wants to propose a certain value:
It sends PREPARE IDp to a majority (or all) of Acceptors.
IDp must be unique, e.g. slotted timestamp in nanoseconds.
e.g.) 1 chooses IDs 1, 3, 5...
r 2 chooses IDs 2,4, 6..., etc.
Timeout? retry with a new (higher) IDp.

© Acceptor receives a PREPARE message for IDp:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Will promise to ignore any request lower than IDp.
Has it ever accepted anything? (assume accepted ID=IDa)
Yes ->Reply with PROMISE |Dp accepted IDa, value.
No -> Reply with PROMISE |Dp.

If a majority of acceptors promise, no ID<IDp can make it through.

PROMISE 6 accepted 5, 'cat'

© Proposer gets majority of PROMISE messages for a specific 1Dp:
It sends PROPOSE IDp, VALUE to a majority (or all) of Acceptors.
Has it got any already accepted value from promises?
Yes - > It picks the value with the highest IDa that it got.
No -> It picks any value it wants.

© Acceptor receives an PROPOSE message for IDp, value:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Reply with ACCEPT |Dp, value. Also send it to all Learners.
a If a majority of acceptors accept |Dp, value, consensus is reached.
Consensus is and will always be on value (not necessarily IDp).

© Proposer or Learner get ACCEPT messages for IDp, value:
a If a proposer/learner gets majority of accept for a specific |Dp,
they know that consensus has been reached on value (not IDp).

The Paxos Algorithm
O’REPARE 5

PROPOSE 5, 'cat’

time

OPREPARE 4 PREPARE 6

PROPOSE 6, 'cat' .

ACCEPT 5, 'cat'
*majority! consensus is 'cat™

PROMISE 5

(Acceptor ,‘a

© Proposer wants to propose a certain value:
It sends PREPARE |Dp to a majority (or all) of Acceptors.
IDp must be unique, e.g. slotted timestamp in nanoseconds.
e.g. 1chooses IDs 1, 3, 5...
‘ 2 chooses IDs 2,4, 6..., etc.
Timeout? retry with a new (higher) IDp.

© Acceptor receives a PREPARE message for IDp:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Will promise to ignore any request lower than IDp.
Has it ever accepted anything? (assume accepted ID=IDa)
Yes ->Reply with PROMISE |Dp accepted |Da, value.
No -> Reply with PROMISE [Dp.

“ If a majority of acceptors promise, no ID<IDp can make it through.

‘ © Acceptor receives an

PROMISE 6 accepted 5, 'cat' ACCEPT 6, 'cat'

© Proposer gets majority of PROMISE messages for a specific IDp:
It sends PROPOSE IDp, VALUE to a majority (or all) of Acceptors.
Has it got any already accepted value from promises?
Yes - > It picks the value with the highest IDa that it got.
No -> It picks any value it wants.

PROPOSE message for IDp, value:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Reply with ACCEPT |Dp, value. Also send it to all Learners.
a If a majority of acceptors accept IDp, value, consensus is reached.
Consensus is and will always be on value (not necessarily IDp).

© Proposer or Learner get ACCEPT messages for IDp, value:
a If a proposer/learner gets majority of accept for a specific |Dp,
they know that consensus has been reached on value (not IDp).

The Paxos Algorithm
O’REPARE 5

PROPOSE 5, 'cat’

time

OPREPARE 4 PREPARE 6

PROPOSE 6, 'cat' .

ACCEPT 5, 'cat'
*majority! consensus is 'cat™

PROMISE 5

(Acceptor ,‘a

© Proposer wants to propose a certain value:
It sends PREPARE |Dp to a majority (or all) of Acceptors.
IDp must be unique, e.g. slotted timestamp in nanoseconds.
e.g. 1chooses IDs 1, 3, 5...
‘ 2 chooses IDs 2,4, 6..., etc.
Timeout? retry with a new (higher) IDp.

© Acceptor receives a PREPARE message for IDp:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Will promise to ignore any request lower than IDp.
Has it ever accepted anything? (assume accepted ID=IDa)
Yes ->Reply with PROMISE |Dp accepted |Da, value.
No -> Reply with PROMISE [Dp.

“ If a majority of acceptors promise, no ID<IDp can make it through.

‘ © Acceptor receives an

PROMISE 6 accepted 5, 'cat' ACCEPT 6, 'cat'

© Proposer gets majority of PROMISE messages for a specific IDp:
It sends PROPOSE IDp, VALUE to a majority (or all) of Acceptors.
Has it got any already accepted value from promises?
Yes - > It picks the value with the highest IDa that it got.
No -> It picks any value it wants.

PROPOSE message for IDp, value:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Reply with ACCEPT |Dp, value. Also send it to all Learners.
a If a majority of acceptors accept IDp, value, consensus is reached.
Consensus is and will always be on value (not necessarily IDp).

© Proposer or Learner get ACCEPT messages for IDp, value:
a If a proposer/learner gets majority of accept for a specific |Dp,
they know that consensus has been reached on value (not IDp).

The Paxos Algorithm
O’REPARE 5

PROPOSE 5, 'cat'

PROPOSE 6, 'cat' —

OPREPARE 4 PREPARE 6

ACCEPT 5, 'cat'

*majority! consensus is ‘cat™

PROMISE 5

(Acceptor ‘9

=3 wants to propose a certain value:
It sends PREPARE IDp to a majority (or all) of Acceptors.
IDp must be unique, e.g. slotted timestamp in nanoseconds.
e.g. Proj 1 chooses IDs 1,3, 5...
2 chooses IDs 2,4, 6..., etc.
Timeout? retry with a new (higher) IDp.

© Acceptor receives a PREPARE message for IDp:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Will promise to ignore any request lower than IDp.
Has it ever accepted anything? (assume accepted ID=IDa)
Yes ->Reply with PROMISE IDp accepted |Da, value.
No -> Reply with PROMISE |Dp.

“ If a majority of acceptors promise, no ID<IDp can make it through.

PROMISE 6 accepted 5, 'cat' ACCEPT 6, 'cat'

= or gets majority of PROMISE messages for a specific IDp:
It sends PROPOSE |Dp, VALUE to a majority (or all) of Acceptors.
Has it got any already accepted value from promises?
Yes - > It picks the value with the highest IDa that it got.
No -> It picks any value it wants.

© Acceptor receives an PROPOSE message for IDp, value:
Did it promise to ignore requests with this IDp?
Yes -> then ignore
No -> Reply with ACCEPT IDp, value. Also send it to all Learners.
a If a majority of acceptors accept |Dp, value, consensus is reached.
Consensus is and will always be on value (not necessarily IDp).

‘ © Proposer or Learner get ACCEPT messages for IDp, value:

If a proposer/learner gets majority of accept for a specific |Dp,
they know that consensus has been reached on value (not IDp).

Paxos Challenges

e Contention

e Non crash-stop behaviour
Asynchrony
Byzantine faults

e (In)efficiency of simple Paxos
Introducing a leader

Protocol “Quick wins”

e Choosing multiple, subsequent values (e.g. Multi-Paxos)

The Raft Consensus Algorithm

e Designed to be easy to understand
e Functionally equivalent to Paxos

e Easier to implement (claim)

e Widely used in the industry

MongoDB, CockroachDB
Etcd, Neo4j, RabbitMQ

	Motivation
	Slide 1: Decentralized Systems Engineering
	Slide 2: So far...
	Slide 3: Conflict-Free Replicated Data Types (CRDTs)
	Slide 4: State-based CRDT – Formalism
	Slide 5: G-Counter CRDT
	Slide 6: G-Counter CRDT
	Slide 7: G-Counter CRDT
	Slide 8: G-Counter CRDT
	Slide 9: G-Counter CRDT
	Slide 10: G-Counter CRDT
	Slide 12: Local-First Software – simpler backends
	Slide 13: Strong Consistency ?
	Slide 14: Replication and Consensus
	Slide 15: Consistent Data Replication
	Slide 16: Consensus
	Slide 17: Single-value Consensus (formally)
	Slide 18: Types of (permissioned) consensus
	Slide 19: Building a consensus...
	Slide 20: Building a better consensus...
	Slide 21: Building a better consensus ?
	Slide 22: Paxos
	Slide 23: Paxos phases : intuition
	Slide 24: The Paxos Algorithm
	Slide 25: The Paxos Algorithm
	Slide 26: The Paxos Algorithm
	Slide 27: The Paxos Algorithm
	Slide 28: The Paxos Algorithm
	Slide 29: The Paxos Algorithm
	Slide 30: The Paxos Algorithm
	Slide 31: The Paxos Algorithm
	Slide 32: The Paxos Algorithm
	Slide 33: The Paxos Algorithm
	Slide 34: The Paxos Algorithm
	Slide 35: The Paxos Algorithm
	Slide 36: Paxos Challenges

	Raft
	Slide 37: The Raft Consensus Algorithm

