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So far...

● Decentralized communication

● Unstructured & structured search

● Data storage

Let’s pick up where we left off ...



Conflict-Free Replicated Data Types (CRDTs)

Various types:

● Values

● Counters

● Sets

Two main categories:

● Operation-based – commutative replicated data types (CmRDTs)

● State-based – convergent replicated data types (CvRDTs)

→ Theoretically equivalent

● Lists

● Log-based

● Text



State-based CRDT – Formalism

Let U be the set of update operations, and V the set of values.

A state-based CRDT is a 5-tuple (S, s0, q, u, m), where:

• S is the set of states;

• s0 ∈ S is the initial state;

• q : S → V is the query function

• u : S × U → S is the update function

• m : S × S → S is the merge function



G-Counter CRDT

Specifications:

● Grow-only counter,

replicated across N machines

● Add(x)

updates our local counter

● Query() returns the value

● Merge(other_state)

merge’s other’s state

class GCounter(object):
def __init__(self, i, n):

self.i = i # server id
self.n = n # number of servers
self.xs = [0] * n

def add(self, x):
assert x >= 0
self.xs[self.i] += x

def query(self):
return sum(self.xs)

def merge(self, other):
zipped = zip(self.xs, other.xs)
self.xs = [max(x, y) for (x, y) in zipped]
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G-Counter CRDT

Specifications:

● Grow-only counter,

replicated across N machines

● Add(x)

updates our local counter

● Query() returns the value
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G-Counter CRDT

History, as seen locally:

Node 1: 0 → 5 → 6 → 12

Node 2: 0 → 4 → 11 → 12

Node 3: 0 → 5 → 12

Node 4: 0 → 2 → 12

… eventually consistent !
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Local-First Software – simpler backends



Strong Consistency ?

● What if we wanted a shared history of the “state” ?

Google Docs approach:

→ centralize

→ use time stamps

→ does not ensure consistency

● How could we stay distributed (or even decentralized) and be consistent ?

● How could we build the same, incremental history of the state ?

Today’s lecture: Replication and consensus !



Replication and Consensus

Paxos

(Homework 3)



Consistent Data Replication

You know of:

● Redundant Array of Independent Disks (RAID)

● Centralized, distributed databases (Master/slave replication)

Our goal, decentralization:

● No privileged “master”

● Replicated & consistent data

→ Hard problem, requires consensus



Consensus

● Consensus is agreeing on one result

● Once a majority agrees on a proposal, that is consensus

● The consensus is eventually known by everyone

● Involved parties want to agree on any result, not just their own

... in the presence of failures

● Types

Permissioned (today) – known nodes

Permissionless (week 9 & 10) – anyone 



Single-value Consensus (formally)

We want all nodes (“processes”) to agree on a single value

● Agreement / Safety

every correct process must agree on the same value

● Termination / Liveness

eventually, every correct process decides some value

● Integrity / Validity (weak / strong / ...)

If all correct processes proposed value X, then correct processes must decide X

If a correct process decides X, then X must have been proposed by correct process

● 𝑓 processes can fail → failure model?



Types of (permissioned) consensus

● Leader-based

● Electing/rejecting leader is tricky,

and requires consensus

● “Following” is easy & efficient

● Peer-to-Peer

aka Leader-less

● Consensus is needed continuously

● No “extra” work when node fails

Leader

Follower
Peer

Peer

Peer

Peer

Peer



Building a consensus... 

Easy (and wrong) !

● All “proposers” node vote

● One acceptor choses the value

What if the acceptor crashes 

... before choosing ? 

... after choosing ?
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Building a better consensus... 

● All “proposers” node vote

● Multiple “acceptors” node

● Value is chosen if accepted by majority

Easy (and still wrong) : split votes ! 



Building a better consensus ?

● Same as before

● Now, “acceptors” nodes accept every value they receive

● Value is chosen if accepted by majority

● We need a two-phase protocol !



Paxos

● A family of distributed algorithms for consensus

Three roles:

● Proposers: put forth values to be chosen

● Acceptors: respond to proposers, reach consensus

● Learners: learn the agreed upon value

● Nodes can take any (or even all) roles

● Nodes must know how many acceptors make up a majority

● Nodes must be persistent: they can’t walk back on choices



Paxos phases : intuition

● Prepare phase

Proposer: “Will you consider a value I propose ?”

Each acceptor: “Okay” / “Nope...”

If a majority is obtained:

● Accept phase

Proposer: “Here’s my proposed value: X”

Acceptors: “Okay for X !” / “Nope!”



The Paxos Algorithm
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Paxos Challenges

● Contention

● Non crash-stop behaviour

Asynchrony

Byzantine faults

● (In)efficiency of simple Paxos

Introducing a leader

Protocol “Quick wins”

● Choosing multiple, subsequent values (e.g. Multi-Paxos)



The Raft Consensus Algorithm

● Designed to be easy to understand

● Functionally equivalent to Paxos

● Easier to implement (claim)

● Widely used in the industry

MongoDB, CockroachDB

Etcd, Neo4j, RabbitMQ

...
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